ALminer
Release 0.1.3

Aida Ahmadi

Feb 07, 2023

TUTORIALS

1 Installation
1.1 Dependencies e e e e e e e

2 Getting started

2.1 1. Querytools . . . i e e e e e e e e e e e e
22 2. Filter &exploreresults e
2.3 3.Plotresultso e e e e e e e e e e e
24 4 Create reportS . . v v v v e
25 S.Downloaddata e e
2.6 6. Advanced query features e e e e e e e e e
2.7 Scientific Categories i e e e e e e e e e e e e e e e e
2.8 Science keywordso L. e e e e e
2.9 Querykeywords e e e e e
2,10 APL .« o o

3 What’s new

4 Acknowledgements
5 Contact us

Python Module Index

Index

[*}

38
40

53

54

55

56

57

ALminer, Release 0.1.3

g miner

ALMA archive mining and visualization toolkit

alminer is a Python-based code to effectively query, analyse, and visualize the ALMA science archive. It also allows
users to directly download ALMA data products and/or raw data for further image processing.

TUTORIALS 1

https://almascience.eso.org/aq/

CHAPTER
ONE

INSTALLATION

The easiest way to install alminer is with pip:

pip install alminer

To obtain the most recent version of the code from GitHub:

pip install https://github.com/emerge—-erc/ALminer/archive/refs/heads/main.zip

Or clone and install from source:

If you have a Github account:

git clone git@github.com:emerge—-erc/ALminer.git

If you do not:

git clone https://github.com/emerge-erc/Alminer.git

After cloning:
cd ALminer
pip install

Note that depending on your setup, you may need to use pip3.

1.1 Dependencies

The dependencies are numpy, matplotlib, pandas, pyvo, astropy version 3.1.2 or higher, and astroquery version
0.4.2.dev6649 or higher. We only use the ast roquery package for downloading data from the ALMA archive. The
strict requirement to have its newest version is due to recent changes made to the ALMA archive. alminer works in
Python 3.

https://github.com/emerge-erc/ALminer
https://pandas.pydata.org/
https://pyvo.readthedocs.io/en/latest
https://www.astropy.org/
https://astroquery.readthedocs.io/en/latest/

CHAPTER
TWO

GETTING STARTED

We have created an extensive tutorial Jupyter Notebook where all alminer features have been highlighted. This is an
excellent starting point to get familiar with all the possibilities; a glossary of all functions is provided at the bottom of
this notebook. We highly recommend working in a Jupyter notebook environment in order to make use of alminer’s
visualization tools. We aim to keep adding new notebooks relevant for various sub-fields in the future.

Note that the Jupyter notebooks may be outdated. The most up-to-date information can be found on this documentation
page.

Q
Note: To work with the tutorial notebook interactively launCh

2.1 1. Query tools

This Section introduces three methods to query the ALMA archive:
e [.1 - Query by target name (alminer.target)
e 1.2 - Query a catalog (alminer.catalog)
e [.3 - Query by ALMA keywords (alminer.keysearch)

General notes about the querying functions:

¢ All querying functions search the ALMA archive for public data by default. To include both public and proprietary
data in the search, set public=None. Similarly, to search for only propietary data, set public=False.

* All querying functions search the ALMA archive for both published and unpublished data. To include only unpub-
lished data, set published=False.

¢ The querying functions will by default print a summary of the observations, including a list of target names. For
large queries, it is useful to turn this feature off in order to not have a long list of targets printed to screen. To turn
off this feature, simply set print_targets=False.

* The queried archive service is by default the Europeran one (ESO). Other services can be specified through the
tap_service argument. Options are: ESO, NRAO, or NAOJ.

* The queries return all possible observations in PANDAS DataFrame format that can be used to further narrow
down your search as demonstrated in Section 2.

Load libraries

: import alminer

import pandas
from astropy.io import ascii

https://nbviewer.jupyter.org/github/emerge-erc/ALminer/blob/main/notebooks/tutorial/ALminer_tutorial.ipynb?flush_cache=True
https://jupyter.org/install
https://mybinder.org/v2/gh/emerge-erc/ALminer/main?filepath=notebooks/tutorial/ALminer_tutorial.ipynb
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

ALminer, Release 0.1.3

2.1.1 1.1 Query by target name

The alminer.target function allows one to query objects by name. This function uses the Astropy SESAME resolver which
searches multiple databases (Simbad, NED, VizieR) to obtain the coordinates of the object of interest, and then queries
the ALMA archive for all observations that contain those coordinates (corresponding to the case of point=True which is
the default). When point=False, the function will return all observations that overlap with a cone extending the position
of interest and a search radius around it. The search radius is by default 1.0 arcminute, but can be modified using the
search_radius keyword (in arcmin units).

Example 1.1.1: query two sources by name

: myquery = alminer.target (['Orion KL', "AB Aur"])

alminer.target results

Target = Orion KL

Number of projects = 23

Number of observations = 38

Number of unique subbands = 129

Total number of subbands = 160

18 target(s) with ALMA data = ['OMC1_NW', 'Orion-KL', 'orion_kl', 'BN-KL', 'OMCl1_SE',
—'Orion_KL_Field_3_North-west_Clump', 'BN', 'OrionKL', 'Orion', 'Orion_KL', 'orion-
—~IRc2', 'OMC-1', 'ONC', 'Orionl', 'OMC-1_Region2', 'ONC_Mosaic', 'Orion_Source_1I',

< 'Orion_BNKIL_source_1"']

Number of projects = 3

Number of observations = 3

Number of unigque subbands = 17

Total number of subbands = 17

3 target(s) with ALMA data = ['AB_Auriga', 'AB_Aur', 'ab_aurigae']

Example 1.1.2: query a list of objects by nhame

First create a catalog or a list of object names. In this example, the catalog Sample_cat . dat has the following content:

Note that the column that is used is the Name column and the coordinates are ignored in this example.

: mylist = ascii.read("Sample_cat.dat", header_start=0, data_start=1)

myquery = alminer.target (mylist['Name'])

alminer.target results
(continues on next page)

2.1. 1. Query tools 4

http://cds.u-strasbg.fr/cgi-bin/Sesame

: myquery =

ALminer, Release 0.1.3

Number of projects = 3

Number of observations = 3
Number of unique subbands = 17
Total number of subbands = 17

3 target (s) with ALMA data =

Number of projects = 3

Number of observations = 3

Number of unique subbands = 12

Total number of subbands = 12

2 target(s) with ALMA data = ['AK_Sco',

Example 1.1.3: include proprietary data

alminer.target results

Number of projects = 6

Number of observations = 10
Number of unique subbands = 56
Total number of subbands = 62

3 target(s) with ALMA data = ['AB_Aur',

Number of projects = 4

Number of observations = 4
Number of unique subbands = 16
Total number of subbands = 16

2 target (s) with ALMA data = ['AK_Sco',

["AB_Auriga',

alminer.target (mylist['Name'],

"AB_Aur',

'"HIP_82747"]

public=None)

'AB_Auriga',

'HIP_82747"]

'ab_aurigae']

'ab_aurigae']

(continued from previous page)

(continues on next page)

2.1. 1. Query tools

ALminer, Release 0.1.3

(continued from previous page)

No observations found.

Example 1.1.4: account for mosaics

The alminer.target function will by default search whether any ALMA observations contain the target of interest’s position.
To search whether any ALMA observations overlap with a larger region of interest, one can set the argument point=False
and provide a search radius in arcminutes using the search_radius argument. The search radius is by default 1.0 arcminute.

myquery = alminer.target (['Orion KL', "AB Aur"], point=False, search_radius=2.0)

alminer.target results

Number of projects = 37

Number of observations = 125

Number of unigque subbands = 312

Total number of subbands = 576

57 target (s) with ALMA data = ['OrionKL', 'Orion H20 maser outburst', 'OrionFieldl-1"',
— 'OrionField2', 'OrionField1-2', 'f1', 'f£7', 'f5', '£8', 'f4', '£3', 'orion_kl',
—'Orion_Source_I1', 'BN', 'f13', 'f11', 'f12', 'f10', 'f9', 'f15', 'f14', 'orion-IRc2
', 'Orion_KL', 'OMC1_SE', 'BN-KL', 'OMC1_NW', 'f23', 'f16', 'OMC-1S', 'OrionKL-SV',
—'OMC-1', 'OrionBullets', 'ONC', 'Orion_BNKL_source_I', 'OMC-1_Regionb5', 'OMC-1_
—~Regionl', 'Orion', 'OMC-1_Region2', 'HC602_HC606_HC608', 'GEMS28', 'HC672', 'ONC_
—Mosaic', 'OMC-1_Region3', 'OMC-1_Region4', 'Orion_KL_Field_1_Orion_Hot_Core',
—'Orion_KIL_Field_2_SMA1', 'Orion_KL_Field_ 3_North-west_Clump', 'Orion KL', 'Orionl',
-'101', '32', '104', '107', '71', 'Orion-KL', 'ORS-8', 'ORS-4']

Number of projects = 3

Number of observations = 3

Number of unique subbands = 17

Total number of subbands = 17

3 target(s) with ALMA data = ['ab_aurigae', 'AB_Aur', 'AB_Auriga']

2.1. 1. Query tools 6

ALminer, Release 0.1.3

2.1.2 1.2 Query by position

The alminer.conesearch and alminer.catalog functions can be used to directly query the ALMA archive by positions in
the sky and a search radius around them. The right ascension and declinations must be given in units of degrees (ICRS).
You can use the Astropy coordinates package to convert your desired coordinates to degrees.

Example 1.2.1: query an object by its coordinates (RA, Dec)

myquery = alminer.conesearch(ra=201.365063, dec=-43.019112, point=False, search_
—radius=10.0)

Number of projects = 24

Number of observations = 77

Number of unigque subbands = 192

Total number of subbands = 312

9 target(s) with ALMA data = ['J1325-430', 'Centaurus_A', 'J1325-4301', 'CenA',
—'Centaurus_a', '3FGL_J1325.4-4301', 'Centaurus A', 'NGC_5128', 'Cen_A"']

Example 1.2.2: query a catalog of objects by their coordinates (RA, Dec)

Let’s first import a catalog, for example the catalog of Spitzer YSOs in Orion from Megeath et al. (2009), and create a
PANDAS DataFrame using rows 866 to 869 of this catalog. Then use the alminer.catalog function to query the ALMA
archive for each target in the DataFrame.

Spitzer = ascii.read("Spitzer_sample.dat", header_start=0, data_start=866, data_
—end=869)

mycat = {"Name": Spitzer["Seq"],
"RAJ2000" : Spitzer["RA2000"],
"DEJ2000" : Spitzer["DEC2000"]}

mycat = pandas.DataFrame (mycat)

myquery = alminer.catalog(mycat)

alminer.catalog results

Number of projects = 1

Number of observations = 1

Number of unique subbands = 4

Total number of subbands = 4

1 target(s) with ALMA data = ['M12_866"]

Number of projects =1
Number of observations = 1
Number of unique subbands = 4
Total number of subbands = 4
1 target(s) with ALMA data = ['M12_867"]
(continues on next page)

2.1. 1. Query tools 7

https://docs.astropy.org/en/stable/coordinates/index.html

ALminer, Release 0.1.3

(continued from previous page)

Number of projects = 2
Number of observations = 2
Number of unique subbands = 8

Total number of subbands = 8
1 target (s) with ALMA data =

["HOPS-172"]

2.1.3 1.3 Query by ALMA keywords

Query the ALMA archive for any (string-type) keywords defined in ALMA TAP system using the alminer.keysearch func-

tion.

The power of this function is in combining keywords. When multiple keywords are provided, they are queried using
‘AND’ logic, but when multiple values are provided for a given keyword, they are queried using ‘OR’ logic. If a given
value contains spaces, its constituents are queried using ‘AND’ logic. Words encapsulated in quotation marks (either * or
“) are queried as phrases. For example,

alminer.keysearch ({"proposal_abstract": ["high-mass star formation outflow
disk"]}) will query the archive for projects with the words “high-mass” AND “star” AND “formation” AND
“outflow” AND “disk” in their proposal abstracts.

alminer.keysearch ({"proposal_abstract": ["high-mass", "star", "formation",
"outflow", "disk"]}) will query the archive for projects with the words “high-mass” OR “star” OR “for-
mation” OR “outflow” OR “disk” in their proposal abstracts.

alminer.keysearch ({"proposal_abstract": ["'high-mass star formation' out-
flow disk"]}) will query the archive for projects with the phrase “high-mass star formation” AND the words
“outflow” AND “disk” in their proposal abstracts.

alminer.keysearch ({"proposal_abstract": ["star formation"],
"scientific_category":['Galaxy evolution']}) will query the archive for projects with
the words “star” AND “formation” in their proposal abstracts AND projects that are within the scientific_category
of ‘Galaxy evolution’.

Note

Tables of ALMA scientific categories and science keywords are provided on the sidebar.

For an overview, see Appendix D of the ALMA Proposer’s Guide.

Example 1.3.1: query a list of ALMA target names that may not be in SIMBAD/NED/VizieR

: myquery = alminer.keysearch ({'target_name': ['GRB021004','SPT0319-47"', 'G345']})

alminer.keysearch results

Number of projects = 17
Number of observations = 31

(continues on next page)

2.1. 1. Query tools 8

https://almascience.eso.org/proposing/proposers-guide#section-63

ALminer, Release 0.1.3

(continued from previous page)

Number of unigque subbands = 121
Total number of subbands = 191
12 target(s) with ALMA data = ['GRB021004', 'G345.5', 'SPT0319-47', 'G345.5043+00.3480

', 'G345.49+1.47', 'G345.50+0.35', 'G345.6487+0.0089', 'G345.01', 'G345.11', 'G345.
—0029-0.2241"', 'G345.5+1.5', 'G345.144-00.216"]

Example 1.3.2: query a list of ALMA projects by their proposal IDs

myquery = alminer.keysearch ({'proposal_id': ['2015.1.00664.S', '2016.1.00204.5']1})

alminer.keysearch results

Number of projects = 2

Number of observations = 16

Number of unique subbands = 16

Total number of subbands = 64

16 target (s) with ALMA data = ['KMOS3DCO0S4-24763', 'KMOS3DGS4-25151"', 'KMOS3DCOS4-
—13701', 'KMOS3DC0S4-10347', 'KMOS3DC0OS4-13174', 'KMOS3DC0OS4-19680', 'KMOS3DCOS4-
—15813', 'KMOS3DC0OS4-15820', 'KMOS3DU4-34138', 'KMOS3DU4-22227', 'KMOS3DU4-32147"',

— '"KMOS3DU4-20547"', 'KMOS3DGS4-11016"', 'KMOS3DGS4-24110', 'KMOS3DGS4-27882', 'AK_Sco']

Example 1.3.3: query by words in the proposal abstract
Query the ALMA archive for proposals that have the phrase ‘high-mass star formation” AND the words ‘outflow’ AND

‘disk’, OR the phrase ‘massive star formation” AND the words ‘outflow” AND ‘disk’ - and do not print the long list of target
names in the summary.

: myquery = alminer.keysearch ({'proposal_abstract': ['"high-mass star formation".

—outflow disk',
'"massive star formation" outflow.
—disk']},
print_targets=False)

alminer.keysearch results

Number of projects = 14

Number of observations = 59

Number of unigque subbands = 206

Total number of subbands = 423

Total number of targets with ALMA data = 29

2.1. 1. Query tools 9

[117:

ALminer, Release 0.1.3

Example 1.3.4: query by combination of keywords

Query the ALMA archive for proposals that have the phrase ‘star formation’ in their abstracts and correspond to the
scientific category of ‘Galaxy evolution’.

myquery = alminer.keysearch({'proposal_abstract': ['"star formation"'],
'scientific_category':['Galaxy evolution']}, print_
—targets=False)

alminer.keysearch results

Number of projects = 245

Number of observations = 2839

Number of unique subbands = 3908

Total number of subbands = 11687

Total number of targets with ALMA data = 1763

Example 1.3.5: query for full polarization data

: myquery = alminer.keysearch ({'science_keyword':['"disks around low-mass stars"'],

'pol_states':['XY', 'YX']}, print_targets=False)

alminer.keysearch results

2.2 2. Filter & explore results

The querying functions presented in the previous section return a PANDAS DataFrame that can be used to further narrow
down your search. This section presents some examples of how you can further filter and explore the results of your
queries:

o 2.1 - Explore results (alminer.explore)

e 2.2 - Summarize results (alminer.summary)

e 2.3 - Filter results (alminer.get_info)

e 2.4 - Line coverage (alminer.line_coverage)

e 2.5-C0, 13C0O, CI80 lines (alminer.CO_lines)
Load libraries & create a query

To explore these options, we will first query the archive using one of the methods presented in the previous section and
use the results in the remainder of this tutorial.

import alminer

observations = alminer.keysearch ({'science_keyword':['Galaxy chemistry']},
print_targets=False)

2.2. 2. Filter & explore results 10

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

ALminer, Release 0.1.3

alminer.keysearch results

Number of projects = 48

Number of observations = 341

Number of unique subbands = 1166

Total number of subbands = 1368

Total number of targets with ALMA data = 64

2.2.1 2.1 Explore results

You can simply display the DataFrame table returned by the query functions using the name you gave it (in this case
observations), but often there are limits to how many rows and columns are presented. With the alminer.explore function,
you can control whether or not you want to display all rows (allrows=True/False) and/or all columns (allcols=True/False).
By default, only the 18 most useful columns are shown and the number of rows is truncated.

Example 2.1.1: View the queried observations as a table (shortened)

alminer.explore (observations)

Obs project_code .. line_sens_native MOUS_id
0 1 2011.0.00268.5S 112.74 uid://A002/X303d22/X7b
1 2 2011.0.00268.S 111.94 uid://A002/X303d22/X7b
2 3 2011.0.00405.58 119.14 uid://A002/X36d874/X7a
3 4 2011.0.00405.58 120.04 uid://A002/X36d874/X7a
4 5 2011.0.00405.8 119.28 uid://A002/X36d874/X7a
5 6 2011.0.00405.8 59.69 wuid://A002/X36d874/X80
6 7 2011.0.00405.58 59.16 uid://A002/X36d874/X80
7 8 2011.0.00405.5s 61.02 uid://A002/X36d874/X80
8 9 2011.0.00405.8 59.71 wuid://A002/X36d874/X80
1359 1360 2019.1.00130.S 19.97 uid://A001/X1465/X3890
1360 1361 2019.1.00130.S 20.59 uid://A001/X1465/X389c
1361 1362 2019.1.00130.S 20.60 uid://A001/X1465/X389c
1362 1363 2019.1.00130.sS 21.39 uid://A001/X1465/X389c
1363 1364 2019.1.00130.S 21.40 uid://A001/X1465/X389c
1364 1365 2019.1.00130.S 18.56 uid://A001/X1465/X3898
1365 1366 2019.1.00130.S 18.72 uid://A001/X1465/X3898
1366 1367 2019.1.00130.S 18.82 uid://A001/X1465/X3898
1367 1368 2019.1.00130.S 18.71 wuid://A001/X1465/X3898

[1368 rows x 18 columns]

2.2. 2. Filter & explore results 11

ALminer, Release 0.1.3

Example 2.1.2: View the queried observations as a table and show all columns

alminer.explore (observations, allcols=True, allrows=False)
you can also set allrows=True to see all rows in the table
but this may be slow for very large queries

Obs project_code . scientific_category

0 1 2011.0.00268.S Galaxy evolution 2022-03-16T
1 2 2011.0.00268.5S Galaxy evolution 2022-03-16T
2 3 2011.0.00405.s Galaxy evolution 2022-03-16T
3 4 2011.0.00405.5 Galaxy evolution 2022-03-16T
4 5 2011.0.00405.5s Galaxy evolution 2022-03-16T
5 6 2011.0.00405.S Galaxy evolution 2022-03-16T
6 7 2011.0.00405.5 Galaxy evolution 2022-03-16T
7 8 2011.0.00405.5s Galaxy evolution 2022-03-16T
8 9 2011.0.00405.8 Galaxy evolution 2022-03-16T
1359 1360 2019.1.00130.8 Active galaxies 2022-03-16T
1360 1361 2019.1.00130.s Active galaxies 2022-03-16T
1361 1362 2019.1.00130.8 Active galaxies 2022-03-16T
1362 1363 2019.1.00130.8 Active galaxies 2022-03-16T
1363 1364 2019.1.00130.s Active galaxies 2022-03-16T
1364 1365 2019.1.00130.8 Active galaxies 2022-03-16T
1365 1366 2019.1.00130.8 Active galaxies 2022-03-16T
1366 1367 2019.1.00130.sS Active galaxies 2022-03-16T
1367 1368 2019.1.00130.8 Active galaxies 2022-03-16T
[1368 rows x 81 columns]

2.2.2 2.2 Summarize results

lastModified
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:26:21.801
15:
15:
15:
15:
15:
15:
15:
15:
15:

26:
26:
26:
26:
26:
26:
26:
26:
26:

21.801
21.801
21.801
21.801
21.801
21.801
21.801
21.801
21.801

The alminer.summary function will print a summary of the observations. This is done by default when the query is run,

but it’s a useful function if the results are filtered further, as shown in the next section.

Example 2.2.1: print the summary of a given query result, including a list of unique ALMA target

names

alminer.summary (observations)

Number of projects = 48

Number of observations = 341

Number of unique subbands = 1166

Total number of subbands = 1368

64 target (s) with ALMA data = ['LESS J0332-2756', 'PKS1830-211', 'ngc4418', 'NGC7469',
— 'NGC_1097', 'Arp220', 'NGC_5253', 'M83', 'NGC253', 'NGC1266', 'wvvll4', 'Mystery_
—Object', 'Sgr_A_star', 'SDSS_J080430.99+360718.1', 'NGC_3256', 'ngc_3256', 'NGC_55',
— 'ngc3256', 'NGC4418', 'NGC_3627_BE', 'circinus', 'IRAS_F16399-0937', 'ngc6240',
—'ngc613', 'n6l13', 'ngc253', 'N159-W_south', 'N159-E', 'N159-W', 'm83', 'IRAS_13120-
—5453"', 'ngc4945', 'HE0433-1028', 'HE0108-4743', 'HE1353-1917', 'HE1108-2813"',

—'HE1029-1831"', 'Y050355.87-672045.1"', 'Y045622.61-663656.9"',

—'Y054826.21-700850.2"', 'Y050953.89-685336.7"', 'Y052333.40-69
—680033.9", 'Y045406.43-664601.4"', 'Y054629.32-693514.2", 'ST
7', 'Y051912.27-690907.2"', 'ST6', 'Y044854.41-690948.3', 'Y0

—'Y052210.08-673459.6"', 'Y053952.11-710930.7"', 'Y051344.99-69

'Y054248.90-694446.3",
3712.1', 'Y052343.48-
10", 'Y045358.57-691106.
52423.39-693904.7",
3510.6', 'Y051916.87-

(continues on next page)

2.2. 2. Filter & explore results

12

ALminer, Release 0.1.3

(continued from previous page)

—~693757.5"', 'Y045100.16-691934.4', 'ngc4526', 'Cloverleaf', 'ngc7465', 'NGC_253',
—'"IRAS_22491-1808"', 'NGC4945', 'NGC1068']

Example 2.2.2: print the summary of a given query result WITHOUT the list of target names

For big tables, it is useful to avoid printing the list of target names in the summary. This can be done by setting
print_targets=False.

alminer.summary (observations, print_targets=False)

Number of projects = 48

Number of observations = 341

Number of unique subbands = 1166

Total number of subbands = 1368

Total number of targets with ALMA data = 64

2.2.3 2.3 Filter results

The search results can be further narrowed down by using PANDAS DataFrame functions. See also this introduction to
data structures. For example, you can use your_query.columns to get a list of all columns in the DataFrame.

To get the description and units of any column use the function alminer.get_info(‘column_name’) where column_name is
the name of the column.

Example 2.3.1: simple selection - observations with angular resolutions < 0.5”

Let’s first check what the description and units of ang_res_arcsec column are:

alminer.get_info('ang_res_arcsec')

Column: ang_res_arcsec

Description: typical spatial resolution
Units: arcsec

Now we can do the some further filtering, say to only keep observations with angular resolutions < 0.5”:

selected = observations|[observations|['ang_res_arcsec'] < 0.5]

and print the summary:

alminer.summary (selected, print_targets=False)

Number of projects = 23
Number of observations = 107
Number of unique subbands = 313
Total number of subbands = 427
(continues on next page)

2.2. 2. Filter & explore results 13

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe

[117:

ALminer, Release 0.1.3

(continued from previous page)

Total number of targets with ALMA data = 41

Example 2.3.2: multiple selections - observations with angular resolution < 0.5” & velocity resolution
<1km/s

selected = observations|[(observations['ang res_arcsec'] < 0.5) &
(observations['vel res kms'] < 1.0)]
alminer.summary (selected, print_targets=False)

Number of projects = 10

Number of observations = 50

Number of unique subbands = 78

Total number of subbands = 120

Total number of targets with ALMA data = 27

Example 2.3.3: observations containing a given frequency

freq = 220.5

selected = observations|[(observations["min_freq GHz"] < freq) &
(observations|["max_freq GHz"] > freq)]

alminer.summary (selected, print_targets=False)

Number of projects = 6

Number of observations = 7

Number of unique subbands = 7

Total number of subbands = 7

Total number of targets with ALMA data = 5

2.2.4 2.4 Line coverage

An alternative to the last example in the previous section is the alminer.line_coverage function which determines how
many targets were observed at a given frequency with the option to include a redshift for the line of interest to be taken
into account. Some notes: * Line frequencies should be given in GHz * Redshift is by default assumed to be 0 * The
line_name keyword is the user’s defined name for the frquency provided

Example 2.4.1: search whether a given frequency is covered in the observations

myline_obs = alminer.line_coverage (observations,
line_freg=220.5,
z=0,
line_name="My favourite line",
print_targets=True)

2.2. 2. Filter & explore results 14

[12]:

ALminer, Release 0.1.3

Summary of 'My favourite line' observations at 220.5 GHz

Number of projects = 6

Number of observations = 7

Number of unique subbands = 7

Total number of subbands = 7

5 target (s) with ALMA data = ['Arp220', 'ngc_3256', 'IRAS_13120-5453', 'ngc253', 'NGC_
—253"]

Example 2.4.2: search whether a given frequency is observed for a target at a given redshift

myline_obs = alminer.line_coverage (observations,
line_freg=400.0,
z=0.5,
line_name="My favourite line",
print_targets=True)

Summary of 'My favourite line' observations at 400.0 GHz (266.667 GHz at z=0.5)
Number of projects = 8

Number of observations = 10

Number of unigque subbands = 11

Total number of subbands = 11

6 target (s) with ALMA data = ['ngc4418', 'Arp220', 'ngc_3256', 'circinus', 'ngc4945',
—'ngc253"]

2.2.5 2.5 Coverage of CO, 13CO, and C180 lines

The alminer.CO_lines function determines how many CO, 13CO, and C180 lines were observed in the provided
DataFrame and returns a DataFrame containing all observations of these transitions.

Example 2.5.1: search whether any CO, 13CO, and C180 lines were observed in the query results

CO_obs = alminer.CO_lines (observations, print_targets=False)

Summary of 'CO (1-0)' observations at 115.271 GHz
Number of projects = 4

Number of observations = 5

Number of unique subbands = 4

Total number of subbands = 5

Total number of targets with ALMA data = 3

Summary of 'CO (2-1)' observations at 230.538 GHz

Number of projects = 10
Number of observations = 13

(continues on next page)

2.2. 2. Filter & explore results 15

ALminer, Release 0.1.3

Number of unigque subbands = 13
Total number of subbands = 13
Total number of targets with ALMA data = 8

Summary of 'CO (3-2)' observations at 345.796 GHz

Number of projects = 3

Number of observations = 5

Number of unique subbands = 5

Total number of subbands = 5

Total number of targets with ALMA data = 4

Summary of 'CO (4-3)' observations at 461.041 GHz

Summary of 'CO (5-4)' observations at 576.268 GHz

Summary of 'CO (6-5)' observations at 691.473 GHz

Summary of 'CO (7-6)' observations at 806.652 GHz

Summary of 'CO (8-7)' observations at 921.8

Summary of '13CO (1-0)' observations at 110
Number of projects = 18

Number of observations = 23

Number of unique subbands = 23

Total number of subbands = 25

Total number of targets with ALMA data = 17

Summary of '13CO (2-1)' observations at 220
Number of projects = 6

Number of observations = 7

Number of unique subbands = 7

Total number of subbands = 7

Total number of targets with ALMA data = 5

GHz

.201 GHz

.399 GHz

(continued from previous page)

(continues on next page)

2.2. 2. Filter & explore results

16

ALminer, Release 0.1.3

Summary of '13CO (3-2)' observations at 330.588 GHz
Number of projects = 2

Number of observations = 5

Number of unique subbands = 5

Total number of subbands = 5

Total number of targets with ALMA data = 4

Summary of '13CO (4-3)' observations at 440.765 GHz
Number of projects =1

Number of observations = 1

Number of unique subbands = 1

Total number of subbands = 1

Total number of targets with ALMA data = 1

Summary of '13CO (5-4)' observations at 550.926 GHz

Summary of '13CO (6-5)' observations at 661.067 GHz

Summary of '13CO (7-6)' observations at 771.184 GHz

Summary of '13CO (8-7)' observations at 881.273 GHz

Summary of 'C180 (1-0)' observations at 109.782 GHz
Number of projects = 19

Number of observations = 24

Number of unigque subbands = 25

Total number of subbands = 27

Total number of targets with ALMA data = 18

Summary of 'C180 (2-1)' observations at 219.56 GHz
Number of projects = 7

Number of observations = 9

Number of unigque subbands = 12

Total number of subbands = 12

Total number of targets with ALMA data = 6

Summary of 'C180 (3-2)' observations at 329.331 GHz

(continued from previous page)

(continues on next page)

2.2. 2. Filter & explore results

17

[14]:

ALminer, Release 0.1.3

(continued from previous page)

Number of projects = 2

Number of observations = 3

Number of unique subbands = 3

Total number of subbands = 3

Total number of targets with ALMA data = 2

Summary of 'C180 (4-3)' observations at 439.089 GHz

Summary of 'C180 (5-4)' observations at 548.831 GHz

Summary of 'C180 (6-5)' observations at 658.553 GHz

Summary of 'C180 (7-6)' observations at 768.252 GHz

Summary of 'C180 (8-7)' observations at 877.922 GHz

Example 2.5.2: search whether any redshifted CO, 13CO, and C180 lines were observed in the query
results

CO_obs = alminer.CO_lines (observations, z=1, print_targets=False)

Summary of 'CO (1-0)' observations at 115.2712018 GHz (57.636 GHz at z=1)

Summary of 'CO (2-1)' observations at 230.538 GHz (115.269 GHz at z=1)
Number of projects = 4

Number of observations = 5

Number of unique subbands = 4

Total number of subbands = 5

Total number of targets with ALMA data = 3

Summary of 'CO (3-2)' observations at 345.7959899 GHz (172.898 GHz at z=1)

(continues on next page)

2.2. 2. Filter & explore results 18

ALminer, Release 0.1.3

(continued from previous page)

Number of projects = 2

Number of observations = 3

Number of unique subbands = 3

Total number of subbands = 3

Total number of targets with ALMA data = 2

Summary of 'CO (4-3)' observations at 461.0407682 GHz (230.52 GHz at z=1)
Number of projects = 10

Number of observations = 13

Number of unique subbands = 13

Total number of subbands = 13

Total number of targets with ALMA data = 8

Summary of 'CO (5-4)' observations at 576.2679305 GHz (288.134 GHz at z=1)
Number of projects = 3

Number of observations = 6

Number of unique subbands = 6

Total number of subbands = 6

Total number of targets with ALMA data = 3

Summary of 'CO (6-5)' observations at 691.4730763 GHz (345.737 GHz at z=1)
Number of projects = 3

Number of observations = 5

Number of unique subbands = 5

Total number of subbands = 5

Total number of targets with ALMA data = 4

Summary of 'CO (7-6)' observations at 806.651806 GHz (403.326 GHz at z=1)

Summary of 'CO (8-7)' observations at 921.7997 GHz (460.9 GHz at z=1)

Summary of '13CO (1-0)' observations at 110.2013218 GHz (55.101 GHz at z=1)

Summary of '13CO (2-1)' observations at 220.3986195 GHz (110.199 GHz at z=1)
Number of projects = 18

Number of observations = 23

Number of unique subbands = 23

Total number of subbands = 25

Total number of targets with ALMA data = 17

(continues on next page)

2.2. 2. Filter & explore results 19

ALminer, Release 0.1.3

(continued from previous page)

Summary of '13CO (3-2)' observations at 330.5878671 GHz (165.294 GHz at z=1)
Number of projects = 1

Number of observations = 2

Number of unique subbands = 2

Total number of subbands = 2

Total number of targets with ALMA data = 1

Summary of '13CO (4-3)' observations at 440.7651735 GHz (220.383 GHz at z=1)
Number of projects = 6

Number of observations = 7

Number of unique subbands = 7

Total number of subbands = 7

Total number of targets with ALMA data = 5

Summary of '13CO (5-4)' observations at 550.9262851 GHz (275.463 GHz at z=1)
Number of projects = 3

Number of observations = 4

Number of unique subbands = 4

Total number of subbands = 4

Total number of targets with ALMA data = 3

Summary of '13CO (6-5)' observations at 661.0672766 GHz (330.534 GHz at z=1)
Number of projects = 2

Number of observations = 5

Number of unique subbands = 5

Total number of subbands = 5

Total number of targets with ALMA data = 4

Summary of '13CO (7-6)' observations at 771.184125 GHz (385.592 GHz at z=1)

Summary of '13CO (8-7)' observations at 881.272808 GHz (440.636 GHz at z=1)
Number of projects =1

Number of observations = 1

Number of unique subbands = 1

Total number of subbands = 1

Total number of targets with ALMA data = 1

Summary of 'C180 (1-0)' observations at 109.7821734 GHz (54.891 GHz at z=1)

Summary of 'C180 (2-1)' observations at 219.5603541 GHz (109.78 GHz at z=1)
(continues on next page)

2.2. 2. Filter & explore results 20

ALminer, Release 0.1.3

(continued from previous page)

Number of projects = 19

Number of observations = 24

Number of unique subbands = 25

Total number of subbands = 27

Total number of targets with ALMA data = 18

Summary of 'C180 (3-2)' observations at 329.3305525 GHz (164.665 GHz at z=1)
Number of projects =1

Number of observations = 2

Number of unique subbands = 2

Total number of subbands = 2

Total number of targets with ALMA data = 1

Summary of 'C180 (4-3)' observations at 439.0887658 GHz (219.544 GHz at z=1)
Number of projects = 7

Number of observations = 9

Number of unique subbands = 12

Total number of subbands = 12

Total number of targets with ALMA data = 6

Summary of 'C180 (5-4)' observations at 548.8310055 GHz (274.416 GHz at z=1)
Number of projects = 2

Number of observations = 3

Number of unique subbands = 3

Total number of subbands = 3

Total number of targets with ALMA data = 2

Summary of 'C180 (6-5)' observations at 658.5532782 GHz (329.277 GHz at z=1)
Number of projects = 2

Number of observations = 3

Number of unique subbands = 3

Total number of subbands = 3

Total number of targets with ALMA data = 2

Summary of 'C180 (7-6)' observations at 768.2515933 GHz (384.126 GHz at z=1)

Summary of 'C180 (8-7)' observations at 877.9219553 GHz (438.961 GHz at z=1)

2.2. 2. Filter & explore results 21

ALminer, Release 0.1.3

2.3 3. Plot results

This section introduces all the plotting functions that help visualise the queried observations:
e 3.1 - Plot an overview of the observations (alminer.plot_overview)
e 3.2 - Plot an overview of a given line in the observations (alminer.plot_line_overview)

* 3.3 - Plot observed frequencies in each band (alminer.plot_bands)

3.4 - Plot observations in each band (alminer.plot_observations)
e 3.5 - Sky distribution (alminer.plot_sky)
General notes about the plotting functions:

* Most of the plotting functions have the option to mark frequencies of CO, 13CO, and C180 lines by toggling
mark_CO=True. A redshift can be provided by setting the z parameter that will shift the marked frequencies
accordingly.

* Most of the plotting functions have the option to mark a list of frequencies. A redshift can be provided by setting
the z parameter that will shift the marked frequencies accordingly.

* Plots can be saved in PDF format by setting the savefig parameter to the desired filename. Figures are saved in a
subdirectory called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be created.

 To avoid displaying the plot (for example to create and save plots in a loop), set showfig=False.
Load libraries & create a query

To explore these options, we will first query the archive using one of the methods presented in the previous section and
use the results in the remainder of this tutorial.

: import alminer

observations = alminer.keysearch ({'science_keyword':['Galaxy chemistry']},
print_targets=False)

alminer.keysearch results

Number of projects = 54

Number of observations = 376

Number of unique subbands = 1288

Total number of subbands = 1501

Total number of targets with ALMA data = 79

2.3.1 3.1 Plot an overview of the observations

The alminer.plot_overview function plots a summary of the observed frequencies, angular resolution, largest angular scales
(LAS), and frequency and velocity resolutions.

Note: The histogram of observed frequencies displays the distribution of central frequencies and also depends
on the choice of binning. To get an overview plot for a specific frequency, use alminer.plot_observations and
alminer.plot_line_overview (see examples below).

2.3. 3. Plot results 22

ALminer, Release 0.1.3

Example 3.1.1: plot an overview of the observations and save the figure

[2]: alminer.plot_overview (observations,

savefig='alma_galaxy_chemistry"')

Observed Frequencies

N - [Band 3: obs. = 396
L ul I Band 4: obs. = 184
e THIT A [Band 5: obs. = 76
= _ =3 Band 6: obs. = 434
e mnee B Band 7: obs. = 384
@ T B Band 8, 9, 10: obs. = 27
o
‘G
P
@
s 14
E
=
=
0 100 150 260 25|C| 300 4{50 45|C| S(IJG
Frequency (GHz)
Angular resolution Largest Angular Scale
000§ [] 1 min = 0.02, max = 62.05 wo0{ [] — min = 0.5, max = 992.88
w uw
s — s
o 1004 S 100
[+ [is
c c
%]] Y] -
"] - 73]
el =]
o g © 4
'S ‘G
[[
@ @
0 0
E E
= 14 = 1 A
= =
o T T T T T o T T T T T
o 10 20 30 40 50] o 200 400 600 800 1000
Beam size (arcsec) LAS (arcsec)
Frequency resolution Velocity resolution
10009 [—
1 min = 244.14, max = 31250.0 1000 3 min = 0.3, max = 95.04
wu] wu
= =
S 100 — S 10l |
s — 12
c _|e T
@ @
(2] [
=] =) =T —
S 1 CHE ||
'S 'S
[e
@ @
0 0
E E
=1 14 =1 14
= =

o 5000 ID(IIIDD ZI_':C;DD EUCII'DD 25600
Frequency resolution (kHz)

T
30000

0 20 40 60 80

Velocity resolution (km s71)

2.3. 3. Plot results

23

ALminer, Release 0.1.3

2.3.2 3.2 Plot an overview of a given line in the observations
The alminer.plot_line_overview function creates overview plots of observed frequencies, angular resolution, LAS, fre-

quency and velocity resolutions for the input DataFrame, and highlights the observations of a give frequency (redshift if
the z parameter is set) specified by the user.

Example 3.2.1: plot an overview of the observations and highlight observations at a particular fre-
quency

[3]: alminer.plot_line_overview (observations, line_freg=100.0)

2.3. 3. Plot results 24

ALminer, Release 0.1.3

Observed Frequencies

e I _ 1 Band 3: obs. = 396
=i 7 obs. = 32
2 THTH | = [Band 4: obs. = 184
]
= 7 _ [Band 5: obs. =76
Z 104 M _ @ Band 6: obs. = 434
5 |
2 T TT] I Band 7: obs. = 384
S EEE Band 8, 9, 10: obs. = 27
o
]
Ko} 14
€
>
=2
0 100 150 260 2%0 300 350 4(I)0 4_‘I:O 560
Frequency (GHz)
Angular resolution Largest Angular Scale
10004 [] [min = 0.02, max = 62.05 1000 [] [min = 0.5, max = 992.88
min = 0.24, max = 62.05 min = 3.34, max = 992.88
_
'4(—_01 100 4 -g 100 4
Z c
(O] — Q —
2 121 i 17
— 104 — 10 4
(o] o
3]
£ £
] 14] 14
= % z %
0 T T T T 7 0 T T T T T
0 10 20 30 40 50 60 0 200 400 600 800 1000
Beam size (arcsec) LAS (arcsec)
Frequency resolution Velocity resolution
10003 77 1 min = 244.14, max = 31250.0 1000{ [7] [min = 0.3, max = 95.04
. min = 969.24, max = 31250.0 min = 2.89, max = 93.33
g 2
5 1004] '8 100 4 T
© - ©
2 c T
(O]] (0]
2 2 E—
S 104 S 104 7]
o (@]
—_ 7_ —
5 7 5 7 .
£ 7 £ 7
= 7 | =z 1
0 T T T T T T 0 f T T
0 5000 10000 15000 20000 25000 30000 0 20 40 60 80

Frequency resolution (kHz)

Velocity resolution (km s~1)

2.3. 3. Plot results

25

ALminer, Release 0.1.3

Example 3.2.2: plot an overview of the observations and highlight observations at a redshifted

frequency
[4]: alminer.plot_line_overview (observations, line_freqg=400.0, z=2)
Observed Frequencies
R _ [Band 3: obs. = 396
=L] [Band 4: obs. = 184
P THTH | o M BzZZ2 obs. = 6
o
= _ [Band 5: obs. = 76
> 104 M _ [Band 6: obs. = 434
5 |
2 T I Band 7: obs. = 384
2 EE Band 8, 9, 10: obs. = 27
o
)
o 14
S
=)
2
0 T T T T r
100 150 200 250 300 350 400 450 500
Frequency (GHz)
Angular resolution Largest Angular Scale
10004 [] [min = 0.02, max = 62.05 1000 [] 1 min = 0.5, max = 992.88
min = 0.27, max = 8.13 min = 2.38, max = 53.69
2 g
o T o
4(_51 100 4 -lra' 100 A
c 2
(O] — (O] —
(%] %))
S] S
4 104 4w 104
o o
g % g %
£ £
= 1 v =z %
0 T T T T T 0 T T T T T
0 10 20 30 40 50 60 0 200 400 600 800 1000
Beam size (arcsec) LAS (arcsec)
Frequency resolution Velocity resolution
10003 7 I min = 244.14, max = 31250.0 10004 [] 1 min = 0.3, max = 95.04
min = 976.56, max = 3904.3 min = 2.18, max = 8.75
2 2
S 1004] £ 1004 —
(] _ ©
2 Z —
(O] 1 (O]
1] (%]
g 5 upiy
o 109 o« 104 -
o (@]
g ¢ 17
=) 14 S 14 7
=2 =2
0 T T T T T T 0 T T T
0 5000 10000 15000 20000 25000 30000 0 20 40 60 80

Frequency resolution (kHz)

Velocity resolution (km s~1)

2.3. 3. Plot results

26

ALminer, Release 0.1.3

2.3.3 3.3 Plot observed frequencies in each band

The alminer.plot_bands function creates detailed plots of observed frequencies in each band.

Example 3.3.1: plot observed frequencies in each band and mark redshifted CO lines

: alminer.plot_bands (observations, mark_CO=True, z=0.5)

2.3. 3. Plot results 27

ALminer, Release 0.1.3

Observed Frequencies

e e RIS IR 5 .1 Band 3: obs. = 396
— NN mm | | n n
2 000] SF 559 sgo gg e S¢ ¢HEE Band 4:obs. = 184
S o8 58 L7 8 vr 8 f {3 Band 5: obs. = 76
s i ¢ [Band6: obs. = 434
@ 1004 {Em Band 7: obs. = 384
Q = F
o !l Band 8, 9, 10: obs. = 27
Y— H
S w0 - - :
(]
Q
£
z
0 T T T
200 300 400 500
Frequency (GHz)
Band 3: obs. = 396 Band 4: obs. = 184
— 1 e] Ty a
n | T —] n o !
c — - c o O 21
2 104 - T -2 1004 oF 3
© © ;!
c L c
(] [
wn wn
Qo Qo
o o
Y Y—
o o
“ 14 —
[} [}
Q Q
IS IS
=} =}
2 2
0 T T T T T
85 90 95 100 105 110 115 135 140 145
Frequency (GHz) Frequency (GHz)
Band 5: obs. = 76 Band 6: obs. = 434
] T]] 1000 4 il ’Nu\
. - = 1 = | g e ¢
silmmlnr S 58
© © H
g = 71 4
[} [}
wn "
Q Q
o1l o
Y Y—
o o
— —
[} (]
Q Ke)
€ €
> =}
2 2
0 T T T
170 180 190 200 210 230 240 250 260
Frequency (GHz) Frequency (GHz)
Band 7: obs. = 384 Band 8, 9, 10: obs. = 27
1000 1 T & T3 100 A a
w SN L ce " c e i
S $£8 > § S S g e
2 oF 8 o | 2 g
S 1004 H i g i
@ @ 104
wn wn
Q Q
o o
5 107 ‘s
@ @
Q Qo 149
IS IS
> >
2 2
ol

320 340
Frequency (GHz)

280 300

430 440 450 460 470 480 490

Frequency (GHz)

2.3. 3. Plot results

28

ALminer, Release 0.1.3

Example 3.3.2: plot observed frequencies in each band and mark frequencies of choice

[6]: alminer.plot_bands (observations, mark_freqg=[106.5, 245.0, 366.31])

2.3. 3. Plot results 29

ALminer, Release 0.1.3

: Number of observations
Number of observations Number of observations

Number of observations

=
o

-

100 150 200 250

Band 3: obs. = 396

Observed Frequencies

300

Frequency (GHz)

Band 3: obs. = 396
Band 4: obs. = 184
Band 5: obs. = 76

Band 6: obs. = 434
Band 7: obs. = 384
Band 8, 9, 10: obs. = 27

500

400 450

1I00R0

Band 4: obs. = 184

104

85 90 9IS 160 165 liO 115
Frequency (GHz)

Band 5: obs. = 76

Number of observations

=
o
L

-
L

125 130 135 140 145 150 155

Frequency (GHz)
Band 6: obs. = 434

-

300 320 340
Frequency (GHz)

"
— — —] c
I L 2
T 10
. mil c
[
"
Q
o
s
o
o 19
Q
IS
=}
=2
T T T 0-
170 180 190 200 210 210 230 240 250 260
Frequency (GHz) Frequency (GHz)
Band 7: obs. = 384 Band 8, 9, 10: obs. = 27
(%]
C
i
D
©
c
(]
214
o
s
o
@
Q
€
>
=2

440 450 460 470 480 490
Frequency (GHz)

2.3. 3. Plot results

30

ALminer, Release 0.1.3

2.3.4 3.4 Plot observed frequencies in each band

The alminer.plot_observations function creates a detailed plot of observations in each band showing the exact observed
frequency ranges. Observation numbers are the input DataFrame’s index values.

Example 3.4.1: plot observed frequencies in each band and mark CO lines

: alminer.plot_observations (observations, mark_CO=True)

2.3. 3. Plot results 31

ALminer, Release 0.1.3

Band 3
115 C€o(1-0)
co(1-0)
110 C*0(1-0)
~
5 105
>
£ 100
@
El
E}' 95
i
90
85
o 250 500 1000 1250 1500 1750
Observatlon Number
Band 4
160 “
| i f if
~
I 150
Q
I ih
c
3
21490
£ |
W 135 I
130 ' Jk ’
125 I
200 400 600 800 1000 1200 1400
Observation Number
Band 5
210
200
N
I
]
190
9
<
o
=
180
o
i
170
800 900 1000 1100 1200 1300 1400 1500
Observation Number
Band 6
270 [i i
260 ’ ll ' Il |
AR =
9 250 || |II ‘
z] _— 1
g 20 | — i
: I L
@ 1 [} L co(2-1)
& 230 -' -' -l i
220 4. I l- co(2-1)
I L] ' ‘- c*®o(2-1)
1
0 250 500 1000 1250 1500 1750
Observatlon Number
Band 7
Yy [
360 . ' | *
= L4 I P | c0E-2)
N
e myp e [
= i [g4 Pco(3-2)
a L) L Je C*0(3-2)
S 320 []
5]
g) R 'Wl
13 i 1,1 i “
[l 1 . \ 'h 1
" 'Y
200 n y 'y
0 200 400 600 800 1000 1200 1400 1600
Observation Number
Band 8, 9, 10
wl "
480] [}
5 i
o 470 [
>
CO(4-3)
& 460 @-3
o
S
o
@ 450
i
) Hco-3)
440 i C*0(4-3)
430 |
200 300 400 700 800 900

500 600
Observation Number

2.3. 3. Plot results 32

ALminer, Release 0.1.3

Example 3.4.2: plot observed frequencies and mark frequencies of choice

[8]: alminer.plot_observations (observations, mark_freg=[106.5, 245.0, 366.3])

2.3. 3. Plot results 33

ALminer, Release 0.1.3

B

&

Frequency (GHz)
© 5
g 8

8

Band 3

85
0 200 400 600 800 1000 1200 1400
Observation Number
Band 4
160 v
| i " im
~
I 150
&)
= } | b
c
o I |
l| |
£ |
U a3 I
130 ’ i ! Jk
125 I
200 400 1000 1200 1400
Observation Number
Band 5
210
200
N
I
)
>"lQl)
2
o
g‘ 180
ki 1
170
800 900 1000 1100 1200 1300 1400 1500
Observation Number
Band 6
270] ‘ I
iy }I
_ %0 I '| ' l ll |
N
il, i L
G 250 [',l
a B ' I ') l
g i RTL
S
g I 1Rl
&)230 |' ‘I I ‘ | || |l|n
1g]
I |
220 '
W Y L
|
o 200 400 1000 1200 1400
Observation Number
Band 7
i
360
iy ! "
§340 n \]]
[] i b i
g
320
: "'"l
o]
= 300 “ 1
11
2680 n
o 200 400 600 800 1000 1200 1400
Observation Number
Band 8, 9, 10
wl "
[
480 l
- W
%470 [}
>
‘é 460
o
S
o
@ 450
i
440 LI
430 |
200 300

0 500
Observation Number

600 700 800

23.

3. Plot results

34

ALminer, Release 0.1.3

2.3.5 3.5 Plot sky distribution

The alminer.plot_sky function creates a plot of the distribution of targets on the sky.

Example 3.5.1: plot sky distribution

: alminer.plot_sky (observations)

2.4 4. Create reports

Sky distribution

This section introduces different ways to save query results:

e 4.1 - Export results as a table (alminer.save_table)

e 4.2 - Save overview plots for each target (alminer.save_source_reports)

Load libraries & create a query

To explore these options, we will first query the archive using one of the methods presented in the previous section and

use the results in the remainder of this tutorial.

: import alminer

observations = alminer.keysearch ({'science_keyword':['"Galaxy chemistry"']},

alminer.keysearch results

Number of projects = 48
Number of observations = 341

print_targets=False)

(continues on next page)

2.4. 4. Create reports

35

ALminer, Release 0.1.3

(continued from previous page)
Number of unique subbands = 1166
Total number of subbands = 1368
Total number of targets with ALMA data = 64

2.4.1 4.1 Export results as a table

The alminer.save_table function writes the provided DataFrame to a table in CSV format in the ‘tables’ folder within the
current working directory. If the ‘tables’ folder does not exist, it will be created.

Example 4.1.1: save query results as a table

alminer.save_table (observations, filename="galaxy_chemistry")

2.4.2 4.2 Save overview plots

The alminer.save_source_reports function creates overview plots of observed frequencies, angular resolution, LAS, fre-
quency and velocity resolutions for each source in the provided DataFrame and saves them in PDF format in the ‘reports’
folder in the current working directory. If the ‘reports’ folder does not exist, it will be created. The reports are named
after the target names.

Note: Currently, the grouping is done based on ALMA target names, so the same source with a slighly different naming
schemes will be treated as separate targets.

Example 4.2.1: save overview plots of each target with CO lines marked

Let’s first narrow down our large query to a smaller subset to only a range of frequencies (Band 3) and angular resolutions
<0.5™

selected = observations|[(observations["min_freqg GHz"] > 80.0) &
(observations["max_freq GHz"] < 115.0) &
(observations["ang_res_arcsec"] < 0.5)]
alminer.summary (selected)

Number of projects = 7

Number of observations = 16

Number of unigque subbands = 61

Total number of subbands = 61

7 target(s) with ALMA data = ['NGC1266', 'Arp220', 'ngc6240', 'n613', 'NGC4418',
—'"NGC7469', 'Cloverleaf']

Now we can create and save plots for each source, with CO and its isotopologues marked:

alminer.save_source_reports (selected, mark_CO=True)

2.4. 4. Create reports 36

ALminer, Release 0.1.3

2.5

5. Download data

The alminer.download_data function allows the user to download the data from the archive directly to a location on the
local disk.

General notes about the download function:

The default download location is the ‘data’ subdirectory in the current working directory. The desired location can
be changed by setting the location parameter to the desired path.

The archive mirror used for downloading can be specified through the archive_mirror parameter. ESO is the default,
and other options are NRAO and NAOJ.

To check the amount of disk space needed, the dryrun parameter can be toggled to True which will only stage the
data and write to the terminal how much space is required.

By default, tar files (including both raw and FITS data products) associated with uids in the provided DataFrame
will be downloaded.

To download only the FITS data products, the fitsonly parameter can be toggled to True.

It is possible to provide a list of strings (to the filename_must_include parameter) that the user wants to be included
in the filenames that are downloaded. This is useful to restrict the download further, for example, to data that have
been primary beam corrected (“.pbcor’) or that have the science target (_sci’ or the ALMA target name). The
choice is largely dependent on the cycle and type of reduction that was performed, and data products that exist on
the archive as a result.

A list of URLSs (files) to be downloaded from the archive can be printed to the terminal by setting print_urls=True.

Load libraries & create a query

To explore these options, we will first query the archive using one of the methods presented in the previous section and
use the results in the remainder of this tutorial.

: import alminer

observations = alminer.keysearch ({'target_name':['G31.41'], 'proposal_id': ['2018']})

alminer.keysearch results

Number of projects = 2
Number of observations = 3
Number of unique subbands =

9
Total number of subbands = 12
1 target(s) with ALMA data =

2.5.1 Example 5.1: download all data products (raw + products)

: alminer.download_data (observations, fitsonly=False, dryrun=True,

location='./data', print_urls=False)

This is a dryrun. To begin download, set dryrun=False.

Download location = ./data

(continues on next page)

2.5. 5. Download data 37

https://almascience.eso.org/aq
https://almascience.nrao.edu/aq
https://almascience.nao.ac.jp/aq

ALminer, Release 0.1.3

(continued from previous page)

Total number of Member OUSs to download = 3

Selected Member OUSs: ['uid://A001/X133d/X325', 'uid://A001/X133d/X327', 'uid://A001/
—X133d/X21b4d "]

Number of files to download = 13

Needed disk space = 450.5 GB

2.5.2 Example 5.2: download only continuum FITS images for the science target

alminer.download_data (observations, fitsonly=True, dryrun=True, location='./data',
filename_must_include=['_sci', '.pbcor', 'cont', 'G31.41'],
print_urls=True)

This is a dryrun. To begin download, set dryrun=False.

Download location = ./data

Total number of Member OUSs to download = 3

Selected Member OUSs: ['uid://A001/X133d/X325', 'uid://A001/X133d/X327', 'uid://A001/
—X133d/X21b4d "]

Number of files to download = 4

Needed disk space = 48.9 MB

File URLs to download = https://almascience.eso.org/dataPortal/member.uid___ A001_
—X133d_X325._G31.41p0.31__sci.spw25_27_29_31.cont.I.tt0.pbcor.fits
https://almascience.eso.org/dataPortal/member.uid___ A001_X133d_X325._G31.41p0.31__sci.
—spw25_27_29_31.cont.I.ttl.pbcor.fits
https://almascience.eso.org/dataPortal/member.uid__ A001_X133d_X327._G31.41p0.31_ sci.
—spw25_27_29_31.cont.I.tt0.pbcor.fits
https://almascience.eso.org/dataPortal/member.uid__ A001_X133d_X327._G31.41p0.31__sci.
—spw25_27_29_31.cont.I.ttl.pbcor.fits

2.6 6. Advanced query features

This Section introduces:
* 6.1 - Create and run your own TAP query (alminer.run_query)
* 6.2 - Convert results to ALminer format (alminer. filter_results)

Load alminer

import alminer

2.6. 6. Advanced query features 38

ALminer, Release 0.1.3

2.6.1 6.1 Create and run your own TAP query

You can use Astronomical Data Query Language (ADQL) to create more complex queries relevant for your work.

The ALminer querying functions provide an option to print the query string that was used to search the ALMA archive
for the user by setting print_query parameter to True.

Once you have created the query string of interest, you can run it using the alminer.run_query function.

Example 6.1.1: Retrieve the ADQL query string used in ALminer query functions

obs = alminer.keysearch ({'proposal_abstract': ['"planet-forming disk"']},
print_targets=False, print_query=True)

alminer.keysearch results

Your query is: SELECT * FROM ivoa.obscore WHERE ((LOWER (proposal_abstract) LIKE '
—%planet—forming disk%')) AND (LOWER (data_rights) LIKE '$public%') AND (LOWER (scan_
—intent) LIKE 'S$target%') ORDER BY proposal_id

Number of projects = 15

Number of observations = 130

Number of unique subbands = 115

Total number of subbands = 665

Total number of targets with ALMA data = 113

Example 6.1.2: Modify the query string and run the query

In the previous example, we searched the ALMA archive for projects with the phrase ‘planet forming disk’ in their
abstracts. But let’s say you want to include the filtering options directly through the TAP query, for example to only query
observations with angular resolutions less than 0.5”.

You can modify the query string accordingly:
query_str = "SELECT * FROM ivoa.obscore WHERE ((LOWER (proposal_abstract) LIKE '

—%planet—-forming disk%')) AND (spatial_resolution < 0.5) AND (LOWER (data_rights).
<LIKE 'S$public%') AND (LOWER (scan_intent) LIKE 'S$target%') ORDER BY proposal_id"

And run the query

: myquery = alminer.run_query (query_str)

2.6.2 6.2 Convert your own query results into ALminer format

To make use of other alminer functions, the resulting DataFrame returned from running your query has to be con-
verted to alminer format where a few useful columns are added to the DataFrame. This can be done through the
alminer.filter_results function.

2.6. 6. Advanced query features 39

https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html

ALminer, Release 0.1.3

Example 6.2.1: Convert query results to ALminer format

: myquery_obs = alminer.filter_results (myquery)

Number of projects = 10

Number of observations = 102

Number of unique subbands = 61

Total number of subbands = 509

100 target(s) with ALMA data = ['HD_163296', 'TW_Hya', 'LupusIII_80', 'LupusIII_115"',
— 'LupusIII_74', 'LupusI_10', 'LupusIII_137', 'LupusIII_73', 'LupusIV_142', 'LupusIII_
—121', '"LupusIII_72', 'LupusIII_133', 'LupusIII_1004', 'LupusIII_1013', 'LupusIII_70
—', 'LupusIII_132', 'LupusIII_38', 'LupusIII_103', 'LupusIII_106', 'LupusIII_57',
—'LupusIII_1007', 'LupusIV_153', 'LupusIII_18', 'LupusIII_34', 'LupusIII_60"',
—'LupusIII_1008"', 'LupusIII_85', 'LupusI_11', 'LupusIII_43', 'LupusIII_141"',
—'LupusIII_79', 'LupusIII_1009', 'LupusIII_44', 'LupusIII_42', 'LupusIII_37',
—'LupusIII_109', 'LupusI_5', 'LupusIV_144', 'LupusIII_99', 'LupusIII_120', 'LupusIII_
—89', 'LupusIII_76', 'LupusIII_82', 'LupusIII_28', 'LupusI_14', 'LupusIII_51"',
—'LupusIII_88', 'LupusIII_75', 'LupusIII_1010', 'LupusIII_68', 'LupusIII_67',
—'LupusIII_71', 'LupusIII_26', 'LupusIII_66', 'LupusIII_130', 'LupusIII_53"',
—'LupusIII_33', 'LupusIII_94', 'LupusIII_40', 'LupusIII_91', 'LupusIV_159"',
—'LupusIII_65', 'LupusIII_116', 'LupusIII_111', 'LupusIII_19', 'LupusIII_21',
—'LupusI_13', 'LupusI_15', 'LupusIII_1005', 'LupusIII_1006', 'LupusIII_1003"',
—'LupusIII_1002', 'LupusIII_49', 'LupusI_12', 'LupusI_16', 'LupusIII_1001",

— 'LupusIII_1015"', 'LupusIII_50', 'LupusI_4', 'LupusIII_114', 'LupusIV_145"',
—'LupusIII_30', 'LupusIII_52', 'LupusIV_151', 'LupusIV_150"', 'LupusIII_87', 'LupusIV_
148", 'LupusIV_147', 'LupusIII_113', 'LupusIII_102', 'LupusIII_1014', 'LupusIII_41',
— 'Serpens-FIRS1', 'v4046_Sgr', 'DG_Tau', 'AS205A', 'RY_Tau', 'ex_lup', 'EM_star_SR_
—24_N', 'EM_star_SR_20']

Now you can use all the analysis and plotting routines presented before on these observations.

2.7 Scientific categories

Below is a table of possible ALMA science categories (as of July 2021) that can be provided to the ‘scientific_category’
keyword in the alminer.keysearch function:

ALMA science category

Active galaxies
Cosmology

Disks and planet formation
Galaxy evolution

ISM and star formation
Local Universe

Solar system

Stars and stellar evolution
Sun

2.7. Scientific categories 40

ALminer, Release 0.1.3

2.8 Science keywords

Below is a table of possible ALMA science categories (as of July 2021) that can be provided to the ‘science_keyword’
keyword in the alminer.keysearch function:

ALMA science keyword

Active Galactic Nuclei (AGN)/Quasars (QSO)
Astrochemistry

Asymptotic Giant Branch (AGB) stars

Black holes

Brown dwarfs

Cataclysmic stars

Cosmic Microwave Background (CMB)/Sunyaev-Zel’dovich Effect (SZE)
Damped Lyman Alpha (DLA) systems
Debris disks

Disks around high-mass stars

Disks around low-mass stars
Dwarf/metal-poor galaxies

Early-type galaxies

Evolved stars - Chemistry

Evolved stars - Shaping/physical structure
Exo-planets

Galactic centres/nuclei

Galaxy Clusters

Galaxy chemistry

Galaxy groups and clusters

Galaxy structure & evolution

Gamma Ray Bursts (GRB)

Giant Molecular Clouds (GMC) properties
Gravitational lenses

HII regions

High-mass star formation

High-z Active Galactic Nuclei (AGN)
Hypergiants

Infra-Red Dark Clouds (IRDC)

Inter-Stellar Medium (ISM)/Molecular clouds
Intermediate-mass star formation

Low-mass star formation

Luminous Blue Variables (LBV)

Luminous and Ultra-Luminous Infra-Red Galaxies (LIRG & ULIRG)
Lyman Alpha Emitters/Blobs (LAE/LAB)
Lyman Break Galaxies (LBG)

Magellanic Clouds

Main sequence stars

Merging and interacting galaxies

Outflows, jets, feedback

Outflows, jets and ionized winds
Photon-Dominated Regions (PDR)/X-Ray Dominated Regions (XDR)
Post-AGB stars

Pre-stellar cores

Pulsars and neutron stars

continues on next page

2.8. Science keywords 41

ALminer, Release 0.1.3

Table 1 - continued from previous page

ALMA science keyword

Solar system - Asteroids

Solar system - Comets

Solar system - Planetary atmospheres
Solar system - Planetary surfaces
Solar system - Trans-Neptunian Objects (TNOs)
Spiral galaxies

Starburst galaxies

Starbursts, star formation

Sub-mm Galaxies (SMG)
Supernovae (SN) ejecta

Surveys of galaxies

The Sun

Transients

White dwarfs

2.9 Query keywords

Below is a table of possible keywords that can be used to query the ALMA Science Archive using the alminer.keysearch

function:

ALMA query keyword Type Description

access_format char(9) Content format of the data

access_url char(72%) URL to download the data

antenna_arrays char(660%*) Blank-separated list of Pad:Antenna pairs, i.e.,
A109:DV09 J504:DV02 J505:DVO0OS5 for antennas
DV09, DV02 and DVO0S5 sitting on pads A109, J504, and
J505, respectively.

asdm_uid char(32%) UID of the ASDM containing this Field.

authors char(4000%) Full list of first author and all co-authors

band_list char(30%) Space delimited list of bands

bib_reference char(30%) Bibliography code

data_rights char(11) Access to data.

dataproduct_type char(5%) type of product

facility_name char(3) telescope name

first_author char(256%*) The first author as provided by telbib.eso.org.

frequency_support char(4000%) All frequency ranges used by the field

group_ous_uid char(64*) Group OUS ID

instrument_name char(4) instrument name

iS_mosaic char(1) Flag to indicate if this ASDM represents a mosaic or not.

lastModified char(*) Time stamp of last modification of the metadata

member_ous_uid char(64%) | Member OUS ID

o_ucd char(35) | UCD describing the observable axis (pixel values)

obs_collection char(4) short name for the data collection

obs_creator_name | char(256%*) | case-insensitive partial match over the full PI name. Wild-
cards can be used

obs_id char(64%) | internal dataset identifier

obs_publisher_did char(33%) publisher dataset identifier

continues on next page

2.9. Query keywords

42

http://telbib.eso.org

ALminer, Release 0.1.3

Table 2 - continued from previous page

ALMA query keyword Type Description

obs_release_date char(*) timestamp of date the data becomes publicly available

obs_title char(256%*) Case-insensitive search over the project title

pol_states char(64*) polarization states present in the data

proposal_abstract char(4000%*) Text search on the proposal abstract. Only abstracts will
be returned which contain the given text. The search is
case-insensitive.

proposal_authors char(2000%) Full name of Cols.

proposal_id char(64*) Identifier of proposal to which NO observation belongs.

pub_abstract char(4000%) Case insensitive text search through the abstract of the
publication.

pub_title char(256%*) Case insensitive search through the title of the publication.

qa2_passed char(1) Quality Assessment 2 status: does the Member / Group
OUS fulfil the PI’s requirements?

s_region char(*) region bounded by observation

scan_intent char(256%*) Scan intent list for the observed field.

schedblock_name char(128%) Name of the Scheduling Block used as a template for ex-
ecuting the ASDM containing this Field.

science_keyword char(200%) Chosen by the PI in the observing tool at the time of pro-
posal submission. For an overview, see Appendix D of
the ALMA Proposer’s Guide. For a precise list, see a this
table of science keywords.

science_observation char(1) Flag to indicate whether this is a science observation.

scientific_category char(200%*) Chosen by the PI in the observing tool at the time of pro-
posal submission. For an overview, see Appendix D of
the ALMA Proposer’s Guide. For a precise list, see this
table of scientific categories.

target_name char(256%*) name of intended target

type char(16%*) Type flags.

2.10 API

Note: This documentation is automatically generated from docstrings in the code. Please open an issue on GitHub if
you find some missing documentation or if you have suggestions for improvements.

2.10.1 ALminer: ALMA archive mining and visualization toolkit

A package for mining the Atacama Large Millimeter/submillimeter Array (ALMA) data archive and visualizing the

queried observations.

alminer.catalog (target_df, search_radius=1.0, tap_service="ESO', point=False, public="True, published=None,
print_query=False, print_targets=True)

Query the ALMA archive for a list of coordinates or a catalog of sources based on their coordinates.

Parameters

* target_df (pandas.DataFrame)— Source names and coordinates.

2.10. API

43

https://almascience.eso.org/proposing/proposers-guide#section-63
https://almascience.eso.org/proposing/proposers-guide#section-63
https://almascience.eso.org/proposing/proposers-guide#section-63
https://almascience.eso.org/proposing/proposers-guide#section-63
https://github.com/emerge-erc/ALminer/issues

ALminer, Release 0.1.3

alminer.

Index:
Rangelndex

Columns:
Name: Name, dtype: str, description: target name (can be numbers or dummy names)
Name: RAJ2000, dtype: float64, description: right ascension in degrees (ICRS) Name:
DEJ2000, dtype: float64, description: declination in degrees (ICRS)

* search_radius (float, optional)— (Default value = 1. arcmin) Search radius (in
arcmin) around the source coordinates.

e tap_service (str, optional) — (Default value = ‘ESO’) The TAP service to use.
Options are: ‘ESO’ for Europe (https://almascience.eso.org/tap), ‘NRAO’ for North Amer-
ica (https://almascience.nrao.edu/tap), or ‘NAOJ for East Asia (https://almascience.nao.ac.
jp/tap)

* point (bool, optional)— (Default value = True) Search whether the specified posi-
tion (ra, dec) is contained within any ALMA observations (point=True) or query all ALMA
observations that overlap with a cone centred at the specified position (ra, dec) and extending
the search_radius (point=False). In the case of point=True, the search_radius parameter is
ignored.

e public(bool, optional)—(Defaultvalue=True) Search for public data (public=True),
proprietary data (public=False), or both public and proprietary data (public=None).

* published (bool, optional)- (Default value = None) Search for published data only
(published=True), unpublished data only (published=False), or both published and unpublished
data (published=None).

e print_query (bool, optional)- (Default value = True) Print the ADQL TAP query
to the terminal.

* print_targets (bool, optional)- (Default value = False) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing the query results.

CO_1lines (observations, z=0.0, print_summary=True, print_targets=True)

Determine how many CO, 13CO, and C180 lines were observed in the provided query DataFrame.

Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* z(floaté4, optional)- (Defaultvalue =0.) Redshift by which the frequencies should
be shifted.

* print_summary (bool, optional)— (Default value = True) Print a summary of the
observations for each (redshifted) CO, 13CO, and C180 line to the terminal.

* print_targets (bool, optional) - (Default value = True) Print the target names
(ALMA source names) with ALMA data for each (redshifted) CO, 13CO, and C180 line to
the terminal.

Return type
pandas.DataFrame containing all observations of (redshifted) CO, 13CO, and C180 lines.

alminer.conesearch (ra, dec, search_radius=1.0, tap_service="ESO', point=False, public="True, published=None,

print_targets=True, print_query=False)

Query the ALMA archive for a given position and radius around it.

2.10. API

44

https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nao.ac.jp/tap
https://almascience.nao.ac.jp/tap

ALminer, Release 0.1.3

Parameters

ra (float)— Right ascension in degrees (ICRS).
dec (float)— Declination in degrees (ICRS).

search_radius (float, optional)— (Default value = 1. arcmin) Search radius (in
arcmin) around the source coordinates.

tap_service (str, optional) — (Default value = ‘ESO’) The TAP service to use.
Options are: ‘ESO’ for Europe (https://almascience.eso.org/tap), ‘NRAO’ for North Amer-
ica (https://almascience.nrao.edu/tap), or ‘NAOJ for East Asia (https://almascience.nao.ac.
jp/tap)

point (bool, optional) - (Default value = True) Search whether the specified posi-
tion (ra, dec) is contained within any ALMA observations (point=True) or query all ALMA
observations that overlap with a cone centred at the specified position (ra, dec) and extending
the search_radius (point=False). In the case of point=True, the search_radius parameter is
ignored.

public(bool, optional)-(Defaultvalue=True) Search for public data (public=True),
proprietary data (public=False), or both public and proprietary data (public=None).

published (bool, optional)- (Default value = None) Search for published data only
(published=True), unpublished data only (published=False), or both published and unpublished
data (published=None).

print_query (bool, optional)- (Default value = True) Print the ADQL TAP query
to the terminal.

print_targets (bool, optional)- (Defaultvalue = False) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing the query results

alminer.download_data (observations, fitsonly=False, dryrun=False, print_urls=False,

filename_must_include=", location="./data', archive_mirror="ESO")

Download ALMA data from the archive to a location on the local machine.

Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,

‘target’, ‘catalog’, & ‘keysearch’ functions.

fitsonly (bool, optional) - (Default value = False) Download individual fits files
only (fitsonly=True). This option will not download the raw data (e.g. ‘asdm’ files), weblogs,
or README files.

dryrun (bool, optional) — (Default value = False) Allow the user to do a test run
to check the size and number of files to download without actually downloading the data
(dryrun=True). To download the data, set dryrun=False.

e print_urls (bool, optional)— (Default value = False) Write the list of urls to be

downloaded from the archive to the terminal.

filename_must_include (1ist of str, optional)— (Default value =) A
list of strings the user wants to be contained in the url filename. This is useful to restrict the
download further, for example, to data that have been primary beam corrected (‘.pbcor’) or
that have the science target or calibrators (by including their names). The choice is largely
dependent on the cycle and type of reduction that was performed and data products that exist

2.10. API

45

https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nao.ac.jp/tap
https://almascience.nao.ac.jp/tap

ALminer, Release 0.1.3

on the archive as a result. In most recent cycles, the science target can be filtered out with the
flag *_sci’ or its ALMA target name.

* location (str, optional)- (Default value = ./data) directory where the downloaded
data should be placed.

e archive_mirror (str, optional)— (Default value = ‘ESO’) The archive service to
use. Options are: ‘ESO’ for Europe (https://almascience.eso.org), ‘NRAO’ for North America
(https://almascience.nrao.edu), or ‘NAOJ for East Asia (https://almascience.nao.ac.jp)

alminer.explore (observations, allcols=False, allrows=False)

Control how much of the pandas.DataFrame with the query results is presented in the displayed table.
Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

e allcols (bool, optional) — (Default value = False) Show all 81 columns (all-
cols=True), or the first 18 columns (allcols=False).

* allrows (bool, optional)— (Default value = False) Show all rows in the DataFrame
(allrows=True), or just a summary (allrows=False).

Return type
pandas.DataFrame containing the query results displayed to the user interface as specified by the
user.
alminer.filter_results (TAP_df, print_targets=True)
Add a few new useful columns to the pandas.DataFrame with the query results from the PyVO TAP service and
return the full query DataFrame and optionally a summary of the results.
Parameters
* TAP_df (pandas.DataFrame)— This is likely the output of ‘run_query’ function.

* print_targets (bool, optional)- (Default value = True) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing the query results.
alminer.get_description (column)

Print the description of a given column in the query results DataFrame.

alminer.get_units (column)

Print the units for a given column in the query results DataFrame.
alminer.get_info (column)

Print the description and units of a given column in the query results DataFrame.

Parameters
column (str)— A column in the pandas.DataFrame query table.

alminer .keysearch (search_dict, tap_service="ESO’, public=True, published=None, print_query=False,
print_targets=True)
Query the ALMA archive for any (string-type) keywords defined in ALMA TAP system.
Parameters

e search_dict (dict[str, list of str])- Dictionary of keywords in the ALMA
archive and their values. Values must be formatted as a list. A list of valid keywords are stored
in VALID_KEYWORDS_STR variable.

2.10. API 46

https://almascience.eso.org
https://almascience.nrao.edu
https://almascience.nao.ac.jp

ALminer, Release 0.1.3

* tap_service (str, optional) — (Default value = ‘ESO’) The TAP service to use.
Options are: ‘ESO’ for Europe (https://almascience.eso.org/tap), ‘NRAQ’ for North Amer-
ica (https://almascience.nrao.edu/tap), or ‘NAOJ for East Asia (https://almascience.nao.ac.
jp/tap)

* public(bool, optional)-(Defaultvalue=True) Search for public data (public=True),
proprietary data (public=False), or both public and proprietary data (public=None).

* published (bool, optional)-— (Default value = None) Search for published data only
(published=True), unpublished data only (published=False), or both published and unpublished
data (published=None).

* print_query (bool, optional)- (Default value = True) Print the ADQL TAP query
to the terminal.

* print_targets (bool, optional)- (Default value = False) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing the query results.

Notes

The power of this function is in combining keywords. When multiple keywords are provided, they are queried
using ‘AND’ logic, but when multiple values are provided for a given keyword, they are queried using ‘OR’ logic.
If a given value contains spaces, its constituents are queried using ‘AND’ logic. Words encapsulated

in quotation marks (either ‘ or “) are queried as phrases. Values for the ‘target_name’ keyword are
queried with ‘OR’ logic.

Examples

keysearch({*‘proposal_abstract: [‘high-mass star formation outflow disk’]})
will query the archive for projects with the words “high-mass” AND “star” AND “formation” AND “outflow”
AND “disk” in their proposal abstracts.

keysearch({*proposal_abstract”: [“high-mass”, “star”, “formation”, “outflow”, “disk”’]})
will query the archive for projects with the words “high-mass” OR “star” OR “formation” OR “outflow” OR
“disk” in their proposal abstracts.

keysearch({*‘proposal_abstract”: [*“high-mass star formation’ outflow disk’’]})
will query the archive for projects with the phrase “high-mass star formation” AND the words “outflow” AND
“disk” in their proposal abstracts.

keysearch({*proposal_abstract”: [‘““star formation”’], ““scientific_category’’:[‘Galaxies’]})
will query the archive for projects with the phrase “star formation” in their proposal abstracts AND projects
that are within the scientific_category of ‘Galaxies’.

alminer.line_coverage (observations, line_freq, z=0.0, line_name=", print_summary=True,
print_targets=True)
Determine how many observations were observed at a given frequency (+redshift).
Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* line_freq (float64)— Frequency of the line of interest in GHz.

2.10. API 47

https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nao.ac.jp/tap
https://almascience.nao.ac.jp/tap

ALminer, Release 0.1.3

alminer.plot_line_overview (observations, line_freq, z=0.0, line_name=", showfig=True, savefig=None)

z (float64, optional)- (Default value =0.) Redshift by which the frequency given in
‘line_freq’ parameter should be shifted.

line_name (str, optional) — (Default value = ©) Name of the line specified in
‘line_freq’.

print_summary (bool, optional)— (Default value = True) Print a summary of the
observations to the terminal.

print_targets (bool, optional)—(Default value = True) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing all observations of line of interest.

Create overview plots of observed frequencies, angular resolution, LAS, frequency and velocity resolutions, high-
lighting the observations of a give (redshifted) frequency with hatches on the bar plots.

alminer.plot_overview (observations, mark_freq=", z=0.0, mark_CO=False, showfig=True, savefig=None)

Parameters

observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

line_freq (float 64)— Frequency of the line of interest in GHz.

z (float64, optional)— (Default value =(0.) Redshift by which the frequency given in
‘line_freq’ parameter should be shifted.

line_name (str, optional) — (Default value = “) Name of the line specified in
‘line_freq’.

showfig (bool, optional)— (Default value = True) Display the plot (showfig=True)
or not (showfig=False).

savefig (str, optional) - (Default value = None) Filename (without an extension)
for the plot to be saved as. Default file extension is PDF. Figure is saved in a subdirectory
called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be
created. Default quality is dpi=300.

Create overview plots of observed frequencies, angular resolution, LAS, frequency and velocity resolutions.

Parameters

observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

mark_freq(list of float64, optional)—(Defaultvalue=") Alistof frequencies
to mark on the plot with dashed lines.

z (float64, optional)— (Default value = 0.) Redshift by which the frequencies given
in ‘mark_freq’ and ‘mark_CO’ parameters should be shifted. Currently only one redshift can
be given for all targets.

mark_CO (bool, optional) - (Default value = False) Mark CO, 13CO, and C180
frequencies on the plot with dashed lines.

showfig (bool, optional)— (Default value = True) Display the plot (showfig=True)
or not (showfig=False).

savefig (str, optional) - (Default value = None) Filename (without an extension)
for the plot to be saved as. Default file extension is PDF. Figure is saved in a subdirectory

2.10. API

48

ALminer, Release 0.1.3

called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be
created. Default quality is dpi=300.

alminer.plot_observations (observations, mark_freq=", z=0.0, mark_CO=False, showfig=True,
savefig=None)
Create detailed plots of observations in each band. The x-axis displays the observation number ‘Obs’ column in the
input DataFrame.

Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* mark_freq(list of float64, optional)-(Defaultvalue=") A listof frequencies
to mark on the plot with dashed lines.

* z(float64, optional)- (Defaultvalue = 0.) Redshift by which the frequencies given
in ‘mark_freq’ and ‘mark_CO’ parameters should be shifted. Currently only one redshift can
be given for all targets.

* mark_CO (bool, optional) - (Default value = False) Mark CO, 13CO, and C180
frequencies on the plot with dashed lines.

* showfig (bool, optional)— (Default value = True) Display the plot (showfig=True)
or not (showfig=False).

* savefig (str, optional) - (Default value = None) Filename (without an extension)
for the plot to be saved as. Default file extension is PDF. Figure is saved in a subdirectory
called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be
created. Default quality is dpi=300.

alminer.plot_bands (observations, mark_freq=", z=0.0, mark_CO=False, showfig=True, savefig=None)
Create overview and detailed plots of observed frequencies in each band.

Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* mark_freq(list of float64, optional)-(Defaultvalue=") A listof frequencies
to mark on the plot with dashed lines.

* z(floaté64, optional)— (Default value = 0.) Redshift by which the frequencies given
in ‘mark_freq’ and ‘mark_CO’ parameters should be shifted. Currently only one redshift can
be given for all targets.

* mark_CO (bool, optional) - (Default value = False) Mark CO, 13CO, and C180
frequencies on the plot with dashed lines.

* showfig (bool, optional)— (Default value = True) Display the plot (showfig=True)
or not (showfig=False).

* savefig (str, optional)— (Default value = None) Filename (without an extension)
for the plot to be saved as. Default file extension is PDF. Figure is saved in a subdirectory
called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be
created. Default quality is dpi=300.

alminer.plot_sky (observations, showfig=True, savefig=None)

Plot the distribution of the targets on the sky.

Parameters

2.10. API 49

ALminer, Release 0.1.3

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* showfig (bool, optional)— (Default value = True) Display the plot (showfig=True)
or not (showfig=False).

* savefig (str, optional)— (Default value = None) Filename (without an extension)
for the plot to be saved as. Default file extension is PDF. Figure is saved in a subdirectory
called ‘reports’ within the current working directory. If the directory doesn’t exist, it will be
created. Default quality is dpi=300.

alminer.run_query (query_str, tap_service="ESO')
Run the TAP query through PyVO service.

Parameters
* query_str (str)— ADQL query to send to the PyVO TAP service

* tap_service (str, optional) — (Default value = ‘ESO’) The TAP service to use.
Options are: ‘ESO’ for Europe (https://almascience.eso.org/tap), ‘NRAO’ for North Amer-
ica (https://almascience.nrao.edu/tap), or ‘NAOJ for East Asia (https://almascience.nao.ac.
jp/tap)

Return type
pandas.DataFrame containing the query results

alminer.summary (observations, print_targets=True)

Print a summary of the observations.
Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* print_targets (bool, optional)-—(Default value = True) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

alminer.target (sources, search_radius=1.0, tap_service="ESO’, point=False, public=True, published=None,
print_query=False, print_targets=True)

Query targets by name.

This is done by using the astropy SESAME resolver to get the target’s coordinates and then the ALMA archive is
queried for those coordinates and a search_radius around them. The SESAME resolver searches multiple databases
(Simbad, NED, VizieR) to parse names commonly found throughout literature and returns their coordinates. If the
target is not resolved in any of these databases, consider using the ‘keysearch’ function and query the archive using
the ‘target_name’ keyword (e.g. keysearch({ ‘target_name’: sources})).

Parameters

* sources (str or list of str)- listof sources by name. IMPORTANT: source
names must be identified by at least one of Simbad, NED, or Vizier)

e search_radius (float, optional)— (Default value = 1. arcmin) Search radius (in
arcmin) around the source coordinates.

* tap_service (str, optional) — (Default value = ‘ESO’) The TAP service to use.
Options are: ‘ESO’ for Europe (https://almascience.eso.org/tap), ‘NRAO’ for North Amer-
ica (https://almascience.nrao.edu/tap), or ‘NAOJ for East Asia (https://almascience.nao.ac.
jp/tap)

* point (bool, optional)— (Default value = True) Search whether the specified posi-
tion (ra, dec) is contained within any ALMA observations (point=True) or query all ALMA

2.10. API 50

https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nao.ac.jp/tap
https://almascience.nao.ac.jp/tap
https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nao.ac.jp/tap
https://almascience.nao.ac.jp/tap

ALminer, Release 0.1.3

observations that overlap with a cone centred at the specified position (ra, dec) and extending
the search_radius (point=False). In the case of point=True, the search_radius parameter is
ignored.

e public(bool, optional)-(Defaultvalue=True) Search for public data (public=True),
proprietary data (public=False), or both public and proprietary data (public=None).

* published (bool, optional)- (Default value = None) Search for published data only
(published=True), unpublished data only (published=False), or both published and unpublished
data (published=None).

e print_query (bool, optional)- (Default value = True) Print the ADQL TAP query
to the terminal.

* print_targets (bool, optional)- (Default value = False) Print a list of targets with
ALMA data (ALMA source names) to the terminal.

Return type
pandas.DataFrame containing the query results.

See also:

keysearch
Query the ALMA archive for any (string-type) keywords defined in ALMA TAP system.

alminer.save_source_reports (observations, mark_freq=", z=0.0, mark_CO=False)

Create overview plots of observed frequencies, angular resolution, LAS, frequency and velocity resolutions for
each source in the provided DataFrame and save them in PDF format in the ‘reports’ subdirectory. If the directory
doesn’t exist, it will be created.

Parameters

* observations (pandas.DataFrame) — This is likely the output of e.g. ‘conesearch’,
‘target’, ‘catalog’, & ‘keysearch’ functions.

* mark_freq(list of float64, optional)-(Defaultvalue=") A listof frequencies
to mark on the plot with dashed lines.

* z(float64, optional)- (Defaultvalue = 0.) Redshift by which the frequencies given
in ‘mark_freq’ and ‘mark_CO’ parameters should be shifted. Currently only one redshift can
be given for all targets.

* mark_CO (bool, optional) - (Default value = False) Mark CO, 13CO, and C180
frequencies on the plot with dashed lines.

Notes
Reports will be grouped by ALMA target names, therefore the same source with many different ALMA names will
be treated as individual unique targets (e.g. TW_Hya, TW Hya, twhya).

alminer.save_table (observations, filename='"mytable')

Write the DataFrame with the query results to a table in CSV format.

The table will be saved in the ‘tables’ subdirectory within the current working directory. If the directory doesn’t
exist, it will be created.

Parameters

* observations (pandas.DataFrame) —

2.10. API 51

ALminer, Release 0.1.3

* filename (str) - (Default value = “mytable”) Name of the table to be saved in the ‘tables’
subdirectory.

2.10. API 52

CHAPTER
THREE

WHAT’'S NEW

* You can now specify which archive mirror to download data from: [ESO](https://almascience.eso.org/aq) is the
default, and other options are [NRAO](https://almascience.nrao.edu/aq) and [NAOJ](https://almascience.nao.ac.
jp/aq). This option can be given through the archive_mirror’ parameter in the download_data function.

* You can now specify which archive service to query: [ESO](https://almascience.eso.org/tap) is the default, and
other options are [NRAO](https://almascience.nrao.edu/tap) and [NAOJ](https://almascience.nrao.edu/tap). This
option can be given through the tap_service’ parameter to all functions that do the query (e.g. keysearch, target,
catalog). For example:

— alminer.target (["TW Hya", "HL Tau"], tap_service='NRAO')

— Note that currently the ESO service is not returning all results, hence it is advisable to test your queries with
multiple services until further notice.

* It is now possible to query entire phrases with the keysearch function. For example:

— alminer.keysearch ({'proposal_abstract': ['""high-mass star formation"
outflow disk']}) will query the proposal abstracts for the phrase high-mass star formation AND
the words outflow AND disk.

— alminer.keysearch ({'proposal_abstract': ['""high-mass star formation"
outflow disk', '"massive star formation" outflow disk']}) will query the the
proposal abstracts for the phrase high-mass star formation AND the words outflow AND disk OR the phrase
massive star formation AND the words outflow AND disk.

53

https://almascience.eso.org/aq
https://almascience.nrao.edu/aq
https://almascience.nao.ac.jp/aq
https://almascience.nao.ac.jp/aq
https://almascience.eso.org/tap
https://almascience.nrao.edu/tap
https://almascience.nrao.edu/tap

CHAPTER
FOUR

ACKNOWLEDGEMENTS

alminer has been developed through a collaboration between Allegro, the ALMA Regional Centre in The Netherlands,
and the University of Vienna as part of the EMERGE-StG project. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agree-
ment No. 851435).

If you use alminer as part of your research, please consider citing this ASCL article (ADS reference will be added to
the GitHub page when available).

alminer makes use of different routines in Astropy and Astroquery. Please also consider citing the following papers: -
Astropy: Astropy Collaboration et al. 2013 - Astroquery: Ginsburg et al. 2019

We also acknowledge the work of Leiden University M.Sc. students, Robin Mentel and David van Dop, who contributed
to early versions of this work.

54

https://www.alma-allegro.nl/
https://emerge.alvarohacar.com
https://ascl.net/code/v/2971
https://github.com/emerge-erc/ALminer
https://www.astropy.org/
https://astroquery.readthedocs.io/en/latest/
https://ui.adsabs.harvard.edu/abs/2013A%26A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2019AJ....157...98G/abstract

CHAPTER
FIVE

CONTACT US

If you encounter issues, please open an issue.

If you have suggestions for improvement or would like to collaborate with us on this project, please e-mail Aida Ahmadi
and Alvaro Hacar.

55

https://github.com/emerge-erc/ALminer/issues
mailto:aahmadi@strw.leidenuniv.nl
mailto:alvaro.hacar@univie.ac.at

PYTHON MODULE INDEX

a

alminer, 43

56

A

alminer
module, 43

C

catalog () (in module alminer), 43
CO_lines () (in module alminer), 44
conesearch () (in module alminer), 44

D

download_data () (in module alminer), 45

E

explore () (in module alminer), 46

F

filter_results () (in module alminer), 46

G

get_description () (in module alminer), 46
get_info () (in module alminer), 46
get_units () (in module alminer), 46

K

keysearch () (in module alminer), 46

L

line_coverage () (in module alminer), 47

M

module
alminer, 43

P

plot_bands () (in module alminer), 49

plot_line_overview () (in module alminer), 48
plot_observations () (in module alminer), 49

plot_overview () (in module alminer), 48
plot_sky () (in module alminer), 49

INDEX

R

run_query () (in module alminer), 50

S

save_source_reports () (in module alminer), 51
save_table () (in module alminer), 51
summary () (in module alminer), 50

T

target () (in module alminer), 50

57

	Installation
	Dependencies

	Getting started
	1. Query tools
	1.1 Query by target name
	Example 1.1.1: query two sources by name
	Example 1.1.2: query a list of objects by name
	Example 1.1.3: include proprietary data
	Example 1.1.4: account for mosaics

	1.2 Query by position
	Example 1.2.1: query an object by its coordinates (RA, Dec)
	Example 1.2.2: query a catalog of objects by their coordinates (RA, Dec)

	1.3 Query by ALMA keywords
	Example 1.3.1: query a list of ALMA target names that may not be in SIMBAD/NED/VizieR
	Example 1.3.2: query a list of ALMA projects by their proposal IDs
	Example 1.3.3: query by words in the proposal abstract
	Example 1.3.4: query by combination of keywords
	Example 1.3.5: query for full polarization data

	2. Filter & explore results
	2.1 Explore results
	Example 2.1.1: View the queried observations as a table (shortened)
	Example 2.1.2: View the queried observations as a table and show all columns

	2.2 Summarize results
	Example 2.2.1: print the summary of a given query result, including a list of unique ALMA target names
	Example 2.2.2: print the summary of a given query result WITHOUT the list of target names

	2.3 Filter results
	Example 2.3.1: simple selection - observations with angular resolutions < 0.5”
	Example 2.3.2: multiple selections - observations with angular resolution < 0.5” & velocity resolution < 1 km/s
	Example 2.3.3: observations containing a given frequency

	2.4 Line coverage
	Example 2.4.1: search whether a given frequency is covered in the observations
	Example 2.4.2: search whether a given frequency is observed for a target at a given redshift

	2.5 Coverage of CO, 13CO, and C18O lines
	Example 2.5.1: search whether any CO, 13CO, and C18O lines were observed in the query results
	Example 2.5.2: search whether any redshifted CO, 13CO, and C18O lines were observed in the query results

	3. Plot results
	3.1 Plot an overview of the observations
	Example 3.1.1: plot an overview of the observations and save the figure

	3.2 Plot an overview of a given line in the observations
	Example 3.2.1: plot an overview of the observations and highlight observations at a particular frequency
	Example 3.2.2: plot an overview of the observations and highlight observations at a redshifted frequency

	3.3 Plot observed frequencies in each band
	Example 3.3.1: plot observed frequencies in each band and mark redshifted CO lines
	Example 3.3.2: plot observed frequencies in each band and mark frequencies of choice

	3.4 Plot observed frequencies in each band
	Example 3.4.1: plot observed frequencies in each band and mark CO lines
	Example 3.4.2: plot observed frequencies and mark frequencies of choice

	3.5 Plot sky distribution
	Example 3.5.1: plot sky distribution

	4. Create reports
	4.1 Export results as a table
	Example 4.1.1: save query results as a table

	4.2 Save overview plots
	Example 4.2.1: save overview plots of each target with CO lines marked

	5. Download data
	Example 5.1: download all data products (raw + products)
	Example 5.2: download only continuum FITS images for the science target

	6. Advanced query features
	6.1 Create and run your own TAP query
	Example 6.1.1: Retrieve the ADQL query string used in ALminer query functions
	Example 6.1.2: Modify the query string and run the query

	6.2 Convert your own query results into ALminer format
	Example 6.2.1: Convert query results to ALminer format

	Scientific categories
	Science keywords
	Query keywords
	API
	ALminer: ALMA archive mining and visualization toolkit

	What’s new
	Acknowledgements
	Contact us
	Python Module Index
	Index

